Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We infer the growth of large scale structure over the redshift range 0.4 ≲z≲ 1 from the cross-correlation of spectroscopically calibrated Luminous Red Galaxies (LRGs) selected from the Dark Energy Spectroscopic Instrument (DESI) legacy imaging survey with CMB lensing maps reconstructed from the latestPlanckand ACT data.We adopt a hybrid effective field theory (HEFT) model that robustly regulates the cosmological information obtainable from smaller scales, such that our cosmological constraints are reliably derived from the (predominantly) linear regime.We perform an extensive set of bandpower- and parameter-level systematics checks to ensure the robustness of our results and to characterize the uniformity of the LRG sample.We demonstrate that our results are stable to a wide range of modeling assumptions, finding excellent agreement with a linear theory analysis performed on a restricted range of scales.From a tomographic analysis of the four LRG photometric redshift bins we find that the rate of structure growth is consistent with ΛCDM with an overall amplitude that is ≃ 5-7% lower than predicted by primary CMB measurements with modest (∼ 2σ) statistical significance.From the combined analysis of all four bins and their cross-correlations withPlanckwe obtainS8= 0.765 ± 0.023, which is less discrepant with primary CMB measurements than previous DESI LRG crossPlanckCMB lensing results.From the cross-correlation with ACT we obtainS8= 0.790+0.024-0.027, while when jointly analyzingPlanckand ACT we findS8= 0.775+0.019-0.022from our data alone andσ8= 0.772+0.020-0.023with the addition of BAO data.These constraints are consistent with the latestPlanckprimary CMB analyses at the ≃ 1.6-2.2σlevel, and are in excellent agreement with galaxy lensing surveys.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Abstract Poststarburst galaxies (PSBs) are young quiescent galaxies that have recently experienced a rapid decrease in star formation, allowing us to probe the fast-quenching period of galaxy evolution. In this work, we obtained Hubble Space Telescope (HST)/WFC3 F110W imaging to measure the sizes of 171 massive ( spectroscopically identified PSBs at 1 <z1.3 selected from the DESI Survey Validation luminous red galaxy sample. This statistical sample constitutes an order of magnitude increase from the ∼20 PSBs with space-based imaging and deep spectroscopy. We perform structural fitting of the target galaxies withpysersicand compare them to quiescent and star-forming galaxies in the 3D-HST survey. We find that these PSBs are more compact than the general population of quiescent galaxies, lying systematically ∼0.1 dex below the established size–mass relation. However, their central surface mass densities are similar to those of their quiescent counterparts ( ). These findings are easily reconciled by later ex situ growth via minor mergers or a slight progenitor bias. These PSBs are round in projection (b/amedian∼ 0.8), suggesting that they are primarily spheroids, not disks, in 3D. We find no correlation between the time since quenching and light-weighted PSB sizes or central densities. This disfavors apparent structural growth due to the fading of centralized starbursts in this galaxy population. Instead, we posit that the fast quenching of massive galaxies at this epoch occurs preferentially in galaxies with preexisting compact structures.more » « less
-
Abstract We investigate the metal species associated with the Ly α forest in eBOSS quasar spectra. Metal absorption lines are revealed in stacked spectra from cross-correlating the selected Ly α absorbers in the forest and the flux fluctuation field. Up to 13 metal species are identified as being associated with relatively strong Ly α absorbers (those with flux fluctuations − 1.0 < δ Ly α < − 0.6 and with a neutral hydrogen column density of ∼ 10 15−16 cm −2 ) over the absorber redshift range of 2 < z abs < 4. The column densities of these species decrease toward higher redshift and for weaker Ly α absorbers. From modeling the column densities of various species, we find that the column density pattern suggests contributions from multiple gas components, both in the circumgalactic medium (CGM) and the intergalactic medium (IGM). While the low-ionization species (e.g., C ii , Si ii , and Mg ii ) can be explained by high-density, cool gas ( T ∼ 10 4 K) from the CGM, the high-ionization species may reside in low-density or high-temperature gas in the IGM. The measurements provide inputs for modeling the metal contamination in the Ly α forest baryon acoustic oscillation measurements. Comparisons with metal absorptions in high-resolution quasar spectra and hydrodynamic galaxy formation simulations can further elucidate the physical conditions of these Ly α absorbers.more » « less
-
Abstract We present a high-significance cross-correlation of CMB lensing maps from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) with luminous red galaxies (LRGs) from the Dark Energy Spectroscopic Instrument (DESI) Legacy Survey spectroscopically calibrated by DESI. We detect this cross-correlation at a significance of 38σ; combining our measurement with thePlanck Public Release 4 (PR4) lensing map, we detect the cross-correlation at 50σ. Fitting this jointly with the galaxy auto-correlation power spectrum to break the galaxy bias degeneracy withσ8, we perform a tomographic analysis in four LRG redshift bins spanning 0.4 ≤z≤ 1.0 to constrain the amplitude of matter density fluctuations through the parameter combinationS8×=σ8(Ωm/ 0.3)0.4. Prior to unblinding, we confirm with extragalactic simulations that foreground biases are negligible and carry out a comprehensive suite of null and consistency tests. Using a hybrid effective field theory (HEFT) model that allows scales as small askmax= 0.6 h/ Mpc, we obtain a 3.3% constraint onS8×=σ8(Ωm/ 0.3)0.4= 0.792+0.024-0.028from ACT data, as well as constraints onS8×(z) that probe structure formation over cosmic time.Our result is consistent with the early-universe extrapolation from primary CMB anisotropies measured byPlanck PR4 within 1.2σ. Jointly fitting ACT andPlanck lensing cross-correlations we obtain a 2.7% constraint ofS8×= 0.776+0.019-0.021, which is consistent with the Planck early-universe extrapolation within 2.1σ, with the lowest redshift bin showing the largest difference in mean. The latter may motivate further CMB lensing tomography analyses atz< 0.6 to assess the impact of potential systematics or the consistency of the ΛCDM model over cosmic time.more » « lessFree, publicly-accessible full text available December 1, 2025
-
ABSTRACT We measure the small-scale clustering of the Data Release 16 extended Baryon Oscillation Spectroscopic Survey Luminous Red Galaxy sample, corrected for fibre-collisions using Pairwise Inverse Probability weights, which give unbiased clustering measurements on all scales. We fit to the monopole and quadrupole moments and to the projected correlation function over the separation range $$7-60\, h^{-1}{\rm Mpc}$$ with a model based on the aemulus cosmological emulator to measure the growth rate of cosmic structure, parametrized by fσ8. We obtain a measurement of fσ8(z = 0.737) = 0.408 ± 0.038, which is 1.4σ lower than the value expected from 2018 Planck data for a flat ΛCDM model, and is more consistent with recent weak-lensing measurements. The level of precision achieved is 1.7 times better than more standard measurements made using only the large-scale modes of the same sample. We also fit to the data using the full range of scales $$0.1\text{--}60\, h^{-1}{\rm Mpc}$$ modelled by the aemulus cosmological emulator and find a 4.5σ tension in the amplitude of the halo velocity field with the Planck + ΛCDM model, driven by a mismatch on the non-linear scales. This may not be cosmological in origin, and could be due to a breakdown in the Halo Occupation Distribution model used in the emulator. Finally, we perform a robust analysis of possible sources of systematics, including the effects of redshift uncertainty and incompleteness due to target selection that were not included in previous analyses fitting to clustering measurements on small scales.more » « less
-
Abstract We present the final data from the Sloan Digital Sky Survey (SDSS) Reverberation Mapping (RM) project, a precursor to the SDSS-V Black Hole Mapper RM program. This data set includes 11 yr photometric and 7 yr spectroscopic light curves for 849 broad-line quasars over a redshift range of 0.1 <z< 4.5 and a luminosity range ofLbol= 1044−47.5erg s−1, along with spectral and variability measurements. We report 23, 81, 125, and 110 RM lags (relative to optical continuum variability) for broad Hα, Hβ, Mgii, and Civusing the SDSS-RM sample, spanning much of the luminosity and redshift ranges of the sample. Using 30 low-redshift RM active galactic nuclei with dynamical-modeling black hole masses, we derive a new estimate of the average virial factor of for the line dispersion measured from the rms spectrum. The intrinsic scatter of individual virial factors is 0.31 ± 0.07 dex, indicating a factor of 2 systematic uncertainty in RM black hole masses. Our lag measurements reveal significantR–Lrelations for Hβand Mgiiat high redshift, consistent with the latest measurements based on heterogeneous samples. While we are unable to robustly constrain the slope of theR–Lrelation for Civgiven the limited dynamic range in luminosity, we found substantially larger scatter in Civlags at fixedL1350. Using the SDSS-RM lag sample, we derive improved single-epoch (SE) mass recipes for Hβ, Mgii, and Civ, which are consistent with their respective RM masses as well as between the SE recipes from two different lines, over the luminosity range probed by our sample. The new Hβand Mgiirecipes are approximately unbiased estimators at given RM masses, but there are systematic biases in the Civrecipe. The intrinsic scatter of SE masses around RM masses is ∼0.45 dex for Hβand Mgii, increasing to ∼0.58 dex for Civ.more » « less
-
H i constraints from the cross-correlation of eBOSS galaxies and Green Bank Telescope intensity mapsABSTRACT We present the joint analysis of Neutral Hydrogen (H i) Intensity Mapping observations with three galaxy samples: the Luminous Red Galaxy (LRG) and Emission Line Galaxy (ELG) samples from the eBOSS survey, and the WiggleZ Dark Energy Survey sample. The H i intensity maps are Green Bank Telescope observations of the redshifted $$21\rm cm$$ emission on $$100 \, {\rm deg}^2$$ covering the redshift range 0.6 < z < 1.0. We process the data by separating and removing the foregrounds present in the radio frequencies with FastI ICA. We verify the quality of the foreground separation with mock realizations, and construct a transfer function to correct for the effects of foreground removal on the H i signal. We cross-correlate the cleaned H i data with the galaxy samples and study the overall amplitude as well as the scale dependence of the power spectrum. We also qualitatively compare our findings with the predictions by a semianalytical galaxy evolution simulation. The cross-correlations constrain the quantity $$\Omega _{\rm {H\,\small {I}}} b_{\rm {H\,\small {I}}} r_{\rm {H\,\small {I}},{\rm opt}}$$ at an effective scale keff, where $$\Omega _\rm {H\,\small {I}}$$ is the H i density fraction, $$b_\rm {H\,\small {I}}$$ is the H i bias, and $$r_{\rm {H\,\small {I}},{\rm opt}}$$ the galaxy–hydrogen correlation coefficient, which is dependent on the H i content of the optical galaxy sample. At $$k_{\rm eff}=0.31 \, h\,{\rm Mpc^{-1}}$$ we find $$\Omega _{\rm {H\,\small {I}}} b_{\rm {H\,\small {I}}} r_{\rm {H\,\small {I}},{\rm Wig}} = [0.58 \pm 0.09 \, {\rm (stat) \pm 0.05 \, {\rm (sys)}}] \times 10^{-3}$$ for GBT-WiggleZ, $$\Omega _{\rm {H\,\small {I}}} b_{\rm {H\,\small {I}}} r_{\rm {H\,\small {I}},{\rm ELG}} = [0.40 \pm 0.09 \, {\rm (stat) \pm 0.04 \, {\rm (sys)}}] \times 10^{-3}$$ for GBT-ELG, and $$\Omega _{\rm {H\,\small {I}}} b_{\rm {H\,\small {I}}} r_{\rm {H\,\small {I}},{\rm LRG}} = [0.35 \pm 0.08 \, {\rm (stat) \pm 0.03 \, {\rm (sys)}}] \times 10^{-3}$$ for GBT-LRG, at z ≃ 0.8. We also report results at $$k_{\rm eff}=0.24$$ and $$k_{\rm eff}=0.48 \, h\,{\rm Mpc^{-1}}$$. With little information on H i parameters beyond our local Universe, these are amongst the most precise constraints on neutral hydrogen density fluctuations in an underexplored redshift range.more » « less
An official website of the United States government
